Running (AMD) GPU
experiments in gem5

Matthew D. Sinclair

University of Wisconsin-Madison, AMD Research
g e I I l sinclair@cs.wisc.edu

mailto:sinclair@cs.wisc.edu

@ Disclaimers g2cem5

e #1: Currently gem5 only supports AMD GPUs
e The concepts are similar to NVIDIA GPUs though

o #2: Currently gem5 only supports GPGPU workloads (no Vulkan,
OpenGL)

0

Contributors edcemb

e AMD Research: Brad Beckmann, Alex Dutu, Tony Gutierrez, Michale

LeBeane, Matthew Poremba, Brandon Potter, Sooraj Puthoor, &
many more

e UW-Madison: Anushka Chandrashekar, Gaurav Jain, Charles

Jamieson, Jing Li, Ndubuisi Osuji, Vishnu Ramadas, Kyle Roarty,
Mingyuan Xiang, Bobbi Yogatama, & others

e Some slides based on content presented by these folks previously

Compiling gem5 GPU Model g2cemb

docker pull gcr.io/gem5-test/gcn-gpu:v22-1
git clone https://gem5.googlesource.com/public/gem5
cd gem5

docker run --volume $(pwd):$(pwd) -w $(pwd) gcr.io/gem5-
test/gcn-gpu:v22-1 scons build/GCN3_X86/gem5.opt -9

e This will take ~20 minutes to compile — we’ll come back to them
e Note: this is not currently working in codespace

Outline

Modeling & Using GPUs in gemb
- What libraries are required?

- What support is provided?

- Where is GPU code?

- How to compile GPU model in gem5?

- Running SE mode GPU programs in gem5
- GPUFS Primer

e?cembd

e < fo.-Ipglo

rocBLAS, ... Code metadata
_ Y

=, | x86ELF

{f

User space

~ I
) I

: '

I

| !

y ,

\ >

--i--q
X

r
OS kernel space 1|
\

hardware
models

This is what a GPU app running in gem5 requires { @

gemb5 runs or models all of this :\CELL

Alternate View e2cemb

rocBLAS (+ Tensile)

Getting all of this installed correctly can be difficult!

0

AMD’s ROCm Stack g?2cemb

¢ ROCm == Radeon Open Compute
e ROCm stack
e Runtime layer — ROCr
e Thunk (user-space driver) — ROCt
e Kernel fusion driver (KFD) — ROCk
e MIOpen — machine intelligence (ML) library
e rocBLAS — BLAS (e.g., GEMMs) library
e HIP — GPU programming language (roughly: LLVM backend, clang front-end)

e gemb simulates all of these except ROCk, which it emulates in SE mode

@ Creating Portable gem5 Resources g2 cemb

-* docker

 Docker container
* Properly installs ROCm software stack

* Publicly Available!

« Integrated into gemb5 repo: https://gem5.googlesource.com/
* Added bmks & doc. in gem5-resources [Bruce ISPASS '20 Best Paper Nom.]

« Used in continuous integration to ensure GPU support is stable
« Strongly suggest building applications requiring ROCm with docker

e All of our experiments today will assume this docker support
e docker pull gcr.io/gem>5-test/gen-gpu:v22-1 <— For gemb5 v22.1

_Y_I

gem5 GPU docker

https://gem5.googlesource.com/

Outline

Modeling & Using GPUs in gemb
- What libraries are required?

- What support is provided?

- Where is GPU code?

- How to compile GPU model in gem5?

- Running GPU programs in gem>

- GPUFS Primer

e?cembd

10

Current Support g2cemb

ROCm supported in gem5: ROCm v4.0

SE mode vs. FS mode:
e SE mode is well supported on stable — today’s main focus
e FS mode was just released on develop with 22.0, will briefly discuss today

AMD GPU support

GCN3 (gfx801 — APU, gfx803 — dGPU)

Vega (gfx900 — dGPU, gfx902 — APU, partial support)
Vega is newer model than GCN3

If you want to run on the VEGA model in gem5, you need to compile for the appropriate
gfx9* model

Standard library: currently not supported — use apu_se.py and gpufs.py instead
Currently only supports Ruby

SE part will focus on GCN3 and gfx801 (most tested)

11

0

APU vs. dGPU

e APU = CPU+GPU have a single, unified address space
e dGPU = CPU and GPU have separate, discrete address spaces

e?cembd

o Sidenote: SQC = GPU L1 I$, TCP = GPU L1 Dg, TCC = unified GPU L2$%

CPU I-Cache

Memory
Controller

Directory

12

Outline

Modeling & Using GPUs in gemb

What libraries are required?

What support is provided?

Where is GPU code?

How to compile GPU model in gem5?
Running SE mode GPU programs in gem5
GPUFS Primer

e?cembd

13

0

Key GPU Code Locations égem5

Gemb5 < top-level directory
e src/
e arch/amdgpu/
« gcn3/ < GCN3 specific code (e.g., GCN3 ISA)
« vega/ < Vega specific code (e.g., Vega ISA)

. gpu-compute/ < GPU core (CU) model
e Instruction buffering, Registers, Vector ALUs
e mem/protocol/ < APU memory model
. mem/ruby/ < APU memory model
e TCP, TCC, SQC (Ruby based)
. dev/hsa; < HSA device models
« configs/
. example/ < apu_se.py sample script (also gpufs.py script)
e Connects multiple CUs, caches, etc. together to create overall GPU model
. ruby/ < APU protocol configs

14

How does a GPU Kernel Actually Run? g2cem>

User Space SW

J

User space SW talks to GPU via ioctl() gpu_compute_driver. [hh|cc] [foct10

e ROCk is emulated in gem5 (SE mode only) \r ROCk j

¢ Handles ioctl commands

CP (Command Proc) frontend dev/hsa/hsa_packet_processor. [hh|cc]

PY TWO prlmary Components: deV/hsa/hW_SChedu-ler. [hh | CC] P e

e HSA packet processor (HSAPP) |{ CP
 Workgroup dispatcher kernels Scheduler

| HW

!

\

Dispatcher

ueue
— mmg HSAPP

Tam mEs EES S S S S S S S S B S B B BN GEEE BN S B R S . .

Runtime creates soft HSA queues
e HSAPP maps them to hardware queues
e HSAPP schedules active queues

Model Components
Runtime creates and enqueues AQL packets |
e Packets include: Head ptr \P\O_\« 40,
 Kernel resource requirements Q& _L Oy Tail ptr
e Kernel size
e Kernel code object pointer hsa_packet.hh
e More...

/ hsa_queue. hh

HSA software queue

15

@ Dispatching Kernels to CUs

dispatcher.[hh|cc]

\\\\\\\ hsa_queue_entry.hh

CuU

CuU

we(1,d, 0)

0)

CuU

Shader \\\\‘

f GPU Dispatcher

~

HSA Queue Entf

(AQll

)

1) Try to dispatch WGs on every cycle

2) Pick oldest AQL pkt in queue; if it has
unexecuted WGs, try to schedule them on a CU

3) Dispatch WG to CU if there are enough WF

~

kernel)

slots, enough GPRs, and enough LDS space /

o Kernel dispatch is resource limited \
e WGs are scheduled to CUs

o Dispatcher tracks status of in-flight/pending kernels

o If a WG from a kernel cannot be scheduled, it is enqueued until resources become available

o When all WGs from a task have completed, the dispatcher frees CU resources and notifies the host

e?cembd

16

0

e?cembd
How does an instruction actually run through GPU?

Fetched WFs Ready WFs Executing WFs

Memory
Execute .
pipeline

Scoreboard Schedule
ﬁ Local memory (LDS)

- GlObal memory (TCP)
> Scalar memory

e Pipeline stages
o Fetch: fetch for dispatched WFs - fetch_stage.[hh|cc] and fetch_unit.[hh|cc]
e Scoreboard: Check which WFs are ready - scoreboard_check_stage. [hh|cc]
e Schedule: Select a WF from the ready pool - schedule_stage. [hh|cc]
e Execute: Run WF on execution resource - exec_stage. [hh]|cc]

e Memory pipeline: Execute (local data store) LDS/global memory operation
e« local_memory_pipeline. [hh|cc]
e global_memory_pipeline. [hh]|cc]
e scalar_memory_pipeline. [hh|cc]

17

0

Outline

e Modeling & Using GPUs in gem5

Where is GPU code?

What libraries are required?

What support is provided?

How to compile GPU model in gem5?

Running GPU programs in gem>5
GPUFS Primer

e?cemMmbd

18

@ Compiling gem5’s GCN3 GPU model g2cemb

cd gem5

docker run --volume $(pwd):$(pwd) -w $(pwd) gcr.io/gem5-test/gcn-
gpu:v22-1 scons build/GCN3_X86/gem5.opt -j9

|

Use the v22.1 gem5 docker we pulled earlier

Build the GCN3 model

Hopefully this has compiled for everyone already

19

0

Outline

e Modeling & Using GPUs in gemb

Where is GPU code?

What libraries are required?

What support is provided?

How to compile GPU model in gem5?

Running GPU programs in gemb
GPUFS Primer

e?cemMmbd

20

0

Running Square g2cemb

e What is square?
e Simple vector addition program — each thread i does C[i] = A[i] + BJi]
o Ideally suited to running on a GPU (perfectly parallel)

e Running:

cd .. ; mkdir —p bin

wget http://dist.gem5.org/dist/v22-1/test-progs/square/square

docker run --volume $(pwd):$(pwd) -w $(pwd) gcr.io/gem5-test/gcn-
gpu:v22-1 gem5/build/GCN3 X86/gem5.opt

gem5/configs/exampledapu _se.p - @/squ@
base config script for running/GP dels (in SE mode)\

3 threads because ROCm uses multiple processes Path to square binary

Should take < 5 minutes to run in gem5

21

0

Comparing register allocation schemes Ssgem':-)

e GPU models have support for multiple register allocation schemes
e To specify: --reg-alloc-policy=[dynamic, simple] on command line
e Simple policy: run 1 wavefront per CU at a time
e Few stalls and contention

e Dynamic policy: run up to max (40) wavefronts per CU at a time if registers
are available

e But more stalls and contention

e Your mission: run square with each policy, compare them!
e Use —d to redirect output to a different folder (default: m5out)
e Based on your results, which policy do you think runs by default?

22

system.,cpu3.gmToCompletelLatency: :overflows %] # Ticks queued in GM pipes ordered response buffer (Unspecified)
system.cpu3.gmToCompleteLatency: :min_value %] # Ticks queued in GM pipes ordered response buffer (Unspecified)
system.cpu3.gmToCompletelLatency: :max_value %] # Ticks queued in GM pipes ordered response buffer (Unspecified)
system.cpu3.gmToCompletelatency: :total (] # Ticks queued in GM pipes ordered response buffer (Unspecified)
system.cpu3.coalsrLineAddresses: :bucket_size # Number of cache lines for coalesced request (Unspecified)
system.cpu3.coalsrLineAddresses: :min_bucket 2] # Number of cache lines for coalesced request (Unspecified)
system.cpu3.coalsrLineAddresses: :max_bucket 20 # Number of cache lines for coalesced request (Unspecified)
system.cpu3.coalsrLineAddresses: :samples 31250 # Number of cache lines for coalesced request (Unspecified)
system.cpu3.coalsrLineAddresses: :mean 2] # Number of cache lines for coalesced request (Unspecified)
system.cpu3.coalsrLineAddresses: :stdev 2] # Number of cache lines for coalesced request (Unspecified)
system.cpu3.coalsrLineAddresses: :underflows %] @.00% 0.00% # Number of cache lines for coalesced request (Unspecified)
system.cpu3.coalsrLineAddresses | 31250 100.00% 100.00% |] 0.00% 100.00% |] 0.00% 100.00%
| %] 0.00% 100.00% | 2] 0.00% 100.00% | (2] 0.00% 100.00% | %] 0.00% 100.00%
%] 0.00% 100.00% | 2] 0.00% 100.00% | (2] 0.00% 100.00% | %] 0.00% 100.00%
e 0.00% 100.00% | 9 0.00% 100.00% | (%] 9.00% 100.00% | Q0 @.00% 100.00%
2 0.00% 100.00% | 2} 0.00% 100.00% | 0.00% 100.00% | 2} 0.00% 100.00% | %]
0.00% 100.00% | 2] 0.00% 100.00% # Number of cache lines for coalesced request (Unspecified)
- - system.cpu3.coalsrLineAddresses: :overflows %] 0.00% 100.00% # Number of cache lines for coalesced request (Unspecified)
ShaderACtlveTICks u hOW system.cpu3.coalsrLineAddresses: :min_value %] # Number of cache lines for coalesced request (Unspecified)
" system.cpu3.coalsrLine; ——— v E-00110110]=) o o) S Yot 3 =2 o - S, specified)
5 srLineAddresses::total 31250 # Number of cache lines for coalesced request (Unspecifie
|On each CU Was system.cpuB.ctiveTicks 1151851499 # Total ticks that any CU attached to this is active (Unspecified
!;] u3.vectorInstSrcOperand: :@ 126518 # vector instruction source operand distribution (Unspecified)
. - system.cpu3d.vecrorme SETY- IR | 103460 # vector iw pepETITied)
ru n n I n thls a system.cpu3.vectorInstSrcOperand::2 137288 # vector 1instruction source operand distribution (Unspecified)
system.cpu3.vectorInstSrcOperand::3 2] # vector instruction source operand distribution (Unspecified)
system.cpu3.vectorInstDstOperand: :@ 128566 # vector instruction destination operand distribution (Unspecified)
system.cpu3.vectorInstDstOperand::1 238700 # vector instruction destination operand distribution (Unspecified)
system.cpu3.vectorInstDstOperand::2 2] # vector instruction destination operand distribution (Unspecified)
system.cpu3.vectorInstDstOperand: :3 [2] # vector instruction destination operand distribution (Unspecified)
system.cpu3.CUs@.vALUInsts 62696 # Number of vector ALU insts issued. (Unspecified)
system.cpu3.CUs@.vALUInstsPerWF 120.569231 # The avg. number of vector ALU insts issued per-wavefront. (Unspecified
)
system.cpu3.CUs@.sALUInsts 10016 # Number of scalar ALU insts issued. (Unspecified)
system.cpu3.CUs@.sALUInstsPerWF 19.261538 # The avg. number of scalar ALU insts issued per-wavefront. (Unspecified
)
system.cpu3.CUs@.instCyclesVALU 62696 # Number of cycles needed to execute VALU insts. (Unspecified)
system.cpu3.CUs@.instCyclesSALU 10016 # Number of cycles needed to execute SALU insts. (Unspecified)
system. cpu3.CUs@.threadCyclesVALU 4912544 # Number of thread cycles used to execute vector ALU ops. Similar to ins

GPU Stats
e GPU stats are different from CPU ones — specific counters for GPU

cembdD

tCyclesVALU but multiplied by the number of active threads. (Unspecified)

system.cpu3.CUs@.vALUUtilization 180
system.cpu3.CUs@.1ldsNoFlatInsts (2]
o LDS. (Unspecified)

system.cpu3.CUs@.ldsNoFlatInstsPerWF]

to LDS) per-wavefront. (Unspecified)

Percentage of active vector ALU threads in a wave. (Unspecified)
Number of LDS insts issued, not including FLAT accesses that resolve t

The avg. number of LDS insts (not including FLAT accesses that resolve

ﬁ3

@ Comparing simple and dynamic register allocation g2cem>

e Simple: 1151851499 ticks
e Dynamic: 1155814499 ticks

e Dynamic slightly (0.5%) worse!
e Dependence tracking in gem5 GPU model is not perfect
e Area where new research contributions are needed :)
e Extra contention causes more stalls

24

@ Dynamic Register Allocation Not Always Better ngem's

m Static Register Allocation = Dynamic Register Allocation

3.5
Q.
s 3
D
o 2.5
Q.
“w 2
ks
N 1.5
e 1
(o]
.-
0
SIS IS \\+\o.o. & O > c,‘voo\ 5>
& L F & & @ S S & b ‘960'&
P T LS A é" D 049,53' o" & \9\ &/@\Q & o ,@6’ AQ e
& @ LGRS S R R D7 &8 9 3/4\ % &
SIS PP FE o 7 Y
& V&S Sl LSS FSE S & s '¢“ 0"
s &;& & ¢ 2 K & S S
< » (&) (o)
P R >/ >/
> O &
é&e' A
N

We patched this with smarter dependence tracking, but other problems may exist

25

gem5-Resources: lots of GPU workloads Ssgem'i-)

<« c O B8 https://resources.gemb.org/resources/square ks Q Search ® & N O © @ A

The square test is used to test the GCN3-GPU model.

Compiling square, compiling the GCN3_X86 gem5, and running square on gem5 is dependent on the gcn-gpu docker image, built from the util/dockerfiles/gen-gpu/Dockerfile on the gemb stable branch.

Compiling Square

By default, square will build for all supported GPU types (gfx801, gfx803)

cd src/gpu/square
docker run --rm -v ${PWD}:${PWD} -w ${PWD} -u $UID:$GID gcr.io/gem5-test/gcn-gpu:v21-2 make

The compiled binary can be found in the bin directory.

Pre-built binary

A pre-built binary can be found at http://dist.gem5.org/dist/v21-2/test-progs/square/square.

Compiling GCN3_X86/gem5.opt

The test is run with the GCN3_X86 gemb5 variant, compiled using the gcn-gpu docker image:

git clone https://gem5.googlesource.com/public/gem5
cd gem5
docker run -u $UID:$GID --volume $(pwd):$(pwd) -w $(pwd) gcr.io/gem5-test/gcn-gpu:v21-2 scons build/GCN3_X86/gem5.opt -j <num cores>

Running Square on GCN3_X86/gem5.opt

docker run -u $UID:$GID --volume $(pwd):$(pwd) -w $(pwd) gcr.io/gem5-test/gcn-gpu:v21-2 gem5/build/GCN3_X86/gem5.opt gem5/configs/example/apu_se.py -n 3 -c bin/square

Utilize these to get started after the workshop!

26

0

Outline

e Modeling & Using GPUs in gemb

Where is GPU code?

What libraries are required?

What support is provided?

How to compile GPU model in gem5?

Running GPU programs in gem>5
GPUFS Primer

e?cemMmbd

27

0

GPUFS (Full System) Simulation eg2cemb

e Now can simulate GPU apps in Full System mode too ("GPUFS")
e Caveat: As of gem5 22.1 only X86 KVM CPU is supported
e Thus gem5 host machine must be X86 with KVM support
e Support for other models is in progress.
e Main GPUFS differences vs. SE mode:
e ROCk (Linux kernel driver) is simulated instead of emulated
e GPU DMA engines and packet processors are modeled in GPUFS
e Virtual memory support is available in GPUFS

28

@ GPUFS use cases

e ROCk (Linux kernel driver) is simulated instead of emulated

e Linux driver can be modified to simulate various changes
For example: Experimenting with AMD GPU'’s flexible page sizes

e GPU DMA engines and packet processors are modeled in GPUFS

e GPU memcpy calls can be performed functionally to decrease simulation time
e Can introduce new DMA packet types
e For example: New packets for data placement

e Virtual memory support is available in GPUFS

e Can modify virtual memory in driver to test new GPU uses
e For example: Page fault handling when GPU footprint > dGPU memory size

e?cembd

29

@ GPUFS Simulated System Changes g2cemb

e GPU Virtual Memory (GPUVM), DMA engines (SDMA), PM4 packet
processor, host data bypass path, and interrupt handler are added
(purple boxes):

30

0

e Docker Container
e Contains an installation of ROCm software stack
e Used to build applications to run in full system simulations
e Publicly Available!
e Integrated into gemb5 repo: https://gem5.googlesource.com/
e Added bmks & doc. in gem5-resources [Bruce ISPASS 20 Best Paper Nom.]
e Strongly suggest building applications requiring ROCm with docker
e Disk Image & Linux Kernel
e Contains a version of Linux and ROCm to be used for Full System simulation

e http://dist.gem5.org/dist/v22-1/images/x86/ubuntu-18-04/x86-gpu-fs-20220512.img.qgz
http://dist.gem5.org/dist/v22-1/kernels/x86/static/vmlinux-5.4.0-105-generic

e Disks can also be created manually for more recent versions

Creating GPUFS Resources g2cemb

31

https://gem5.googlesource.com/
http://dist.gem5.org/dist/v22-1/images/x86/ubuntu-18-04/x86-gpu-fs-20220512.img.gz
http://dist.gem5.org/dist/v22-1/kernels/x86/static/vmlinux-5.4.0-105-generic

Current GPUFS Support g2cemb

ROCm supported in gem5: ROCm v4.3
¢ ROCm 5.0 and ROCm 5.4 have also been tested

e Currently these disk images need to be created manually (vs. using packer / downloading
image)

Full System AMD GPU support

e Vega (gfx900 — dGPU)
e Only officially supported gfx90x GPUs can be run in gem5 Full System with real driver

Standard library currently not supported — use
configs/example/gpufs/vegal0_kvm.py

Currently only supports Ruby
GPUFS is only supported on Vega with dGPU devices

32

0

Compiling gem5’s Vega GPU Model

e Full System GPU model is built similar to other ISAs:
e scons -j17 build/VEGA X86/gem5.opt

e Do not need to build gem5 using docker!

e?cembd

33

0

Building applications to run in GPUFS g?cemb

e A docker image with ROCm stack and compilers is provided to build apps
e docker pull gcr.io/gem5-test/gpu-fs:v22-1

e Example: Building square in gem5-resources repository
e cd gem5-resources/src/gpu/square

e docker run --rm -v $PWD:$PWD -w $PWD gcr.io/gem5-test/gpu-
fs:v22-1 make

34

@ Running square in GPUFS g?cemb

e Note: Currently on the X86 KVM CPU can be used
¢ In the future other CPU models will be supported

e Running:

e build/VEGA X86/gem5.opt configs/example/gpufs/vegald kvm.py --
app gem5-resources/src/gpu/square/bin/square --disk-
image=/path/to/disk -kernel=/path/to/kernel --gpu-mmio-
trace=gem5-resources/src/gpu-fs/vega mmio.log

e Note: All files passed to command lines are inputs and must be valid
e This requires that you have built the disk image and kernel (takes too long for tutorial)

35

@ Comparing register allocation schemes €2 cemS

e Similar to SE mode specify --reg-alloc-policy on command line
e In general commands are the same as SE mode but without running through docker

e To specify: --reg-alloc-policy=[dynamic, simple] on command line
e Simple policy: run 1 wavefront per CU at a time
e Few stalls and contention

e Dynamic policy: run up to max (40) wavefronts per CU at a time if registers
are available

e But more stalls and contention

e Your mission: run square with each policy, compare them!
e Use —d to redirect output to a different folder (default: m5out)
e Based on your results, which policy do you think runs by default?

36

	Slide 1: Running (AMD) GPU experiments in gem5
	Slide 2: Disclaimers
	Slide 3: Contributors
	Slide 4: Compiling gem5 GPU Model
	Slide 5: Outline
	Slide 6
	Slide 7: Alternate View
	Slide 8: AMD’s ROCm Stack
	Slide 9: Creating Portable gem5 Resources
	Slide 10: Outline
	Slide 11: Current Support
	Slide 12: APU vs. dGPU
	Slide 13: Outline
	Slide 14: Key GPU Code Locations
	Slide 15: How does a GPU Kernel Actually Run?
	Slide 16: Dispatching Kernels to CUs
	Slide 17: How does an instruction actually run through GPU?
	Slide 18: Outline
	Slide 19: Compiling gem5’s GCN3 GPU model
	Slide 20: Outline
	Slide 21: Running Square
	Slide 22: Comparing register allocation schemes
	Slide 23: GPU Stats
	Slide 24: Comparing simple and dynamic register allocation
	Slide 25: Dynamic Register Allocation Not Always Better
	Slide 26: gem5-Resources: lots of GPU workloads
	Slide 27: Outline
	Slide 28: GPUFS (Full System) Simulation
	Slide 29: GPUFS use cases
	Slide 30: GPUFS Simulated System Changes
	Slide 31: Creating GPUFS Resources
	Slide 32: Current GPUFS Support
	Slide 33: Compiling gem5’s Vega GPU Model
	Slide 34: Building applications to run in GPUFS
	Slide 35: Running square in GPUFS
	Slide 36: Comparing register allocation schemes

