
Running (AMD) GPU
experiments in gem5

Matthew D. Sinclair

University of Wisconsin-Madison, AMD Research

sinclair@cs.wisc.edu

mailto:sinclair@cs.wisc.edu

2

Disclaimers

• #1: Currently gem5 only supports AMD GPUs

• The concepts are similar to NVIDIA GPUs though

• #2: Currently gem5 only supports GPGPU workloads (no Vulkan,
OpenGL)

3

Contributors

• AMD Research: Brad Beckmann, Alex Dutu, Tony Gutierrez, Michale
LeBeane, Matthew Poremba, Brandon Potter, Sooraj Puthoor, &
many more

• UW-Madison: Anushka Chandrashekar, Gaurav Jain, Charles
Jamieson, Jing Li, Ndubuisi Osuji, Vishnu Ramadas, Kyle Roarty,
Mingyuan Xiang, Bobbi Yogatama, & others

• Some slides based on content presented by these folks previously

4

Compiling gem5 GPU Model

docker pull gcr.io/gem5-test/gcn-gpu:v22-1

git clone https://gem5.googlesource.com/public/gem5

cd gem5

docker run --volume $(pwd):$(pwd) -w $(pwd) gcr.io/gem5-
test/gcn-gpu:v22-1 scons build/GCN3_X86/gem5.opt -j9

• This will take ~20 minutes to compile – we’ll come back to them

• Note: this is not currently working in codespace

5

Outline

• Modeling & Using GPUs in gem5

- What libraries are required?

- What support is provided?

- Where is GPU code?

- How to compile GPU model in gem5?

- Running SE mode GPU programs in gem5

- GPUFS Primer

6

MEM

CUCU
CUCU

CP
X86

Core
x86

Core

hardware

models

CPU GPU

GCN3 ELF +

Code metadata

x86 ELF
HIP

Libraries

ROCr

ROCt

ROCk

HIProcBLAS, …MIOpen
App

Source

User space

OS kernel space

This is what a GPU app running in gem5 requires

gem5 runs or models all of this

7

Alternate View

OpenCL HIP

MIOpen

rocBLAS (+ Tensile)

hipBLAS

ROCm

Getting all of this installed correctly can be difficult!

8

AMD’s ROCm Stack

• ROCm == Radeon Open Compute

• ROCm stack

• Runtime layer – ROCr

• Thunk (user-space driver) – ROCt

• Kernel fusion driver (KFD) – ROCk

• MIOpen – machine intelligence (ML) library

• rocBLAS – BLAS (e.g., GEMMs) library

• HIP – GPU programming language (roughly: LLVM backend, clang front-end)

• …

• gem5 simulates all of these except ROCk, which it emulates in SE mode

9

Creating Portable gem5 Resources

• Docker container

• Properly installs ROCm software stack

• Publicly Available!

• Integrated into gem5 repo: https://gem5.googlesource.com/

• Added bmks & doc. in gem5-resources [Bruce ISPASS ‘20 Best Paper Nom.]

• Used in continuous integration to ensure GPU support is stable

• Strongly suggest building applications requiring ROCm with docker

• All of our experiments today will assume this docker support

• docker pull gcr.io/gem5-test/gcn-gpu:v22-1

gem5 GPU docker

For gem5 v22.1

https://gem5.googlesource.com/

10

Outline

• Modeling & Using GPUs in gem5

- What libraries are required?

- What support is provided?

- Where is GPU code?

- How to compile GPU model in gem5?

- Running GPU programs in gem5

- GPUFS Primer

11

Current Support

• ROCm supported in gem5: ROCm v4.0

• SE mode vs. FS mode:

• SE mode is well supported on stable – today’s main focus

• FS mode was just released on develop with 22.0, will briefly discuss today

• AMD GPU support

• GCN3 (gfx801 – APU, gfx803 – dGPU)

• Vega (gfx900 – dGPU, gfx902 – APU, partial support)

• Vega is newer model than GCN3

• If you want to run on the VEGA model in gem5, you need to compile for the appropriate
gfx9* model

• Standard library: currently not supported – use apu_se.py and gpufs.py instead

• Currently only supports Ruby

• SE part will focus on GCN3 and gfx801 (most tested)

12

APU vs. dGPU

• APU = CPU+GPU have a single, unified address space

• dGPU = CPU and GPU have separate, discrete address spaces

• Sidenote: SQC = GPU L1 I$, TCP = GPU L1 D$, TCC = unified GPU L2$

CU

TCP

CU

TCP

CU

TCP

CU

TCP

SQC

TCC

CPU0 CPU1

CPU I-Cache

L1D L1D

L2

Directory
Memory

Controller
Memory

GPU

CPU

Scalar Cache

13

Outline

• Modeling & Using GPUs in gem5

- What libraries are required?

- What support is provided?

- Where is GPU code?

- How to compile GPU model in gem5?

- Running SE mode GPU programs in gem5

- GPUFS Primer

14

Key GPU Code Locations
• Gem5  top-level directory

• src/

• arch/amdgpu/

• gcn3/ GCN3 specific code (e.g., GCN3 ISA)

• vega/  Vega specific code (e.g., Vega ISA)

• gpu-compute/  GPU core (CU) model
• Instruction buffering, Registers, Vector ALUs

• mem/protocol/  APU memory model

• mem/ruby/  APU memory model
• TCP, TCC, SQC (Ruby based)

• dev/hsa/  HSA device models
• configs/

• example/  apu_se.py sample script (also gpufs.py script)

• Connects multiple CUs, caches, etc. together to create overall GPU model

• ruby/  APU protocol configs

15

How does a GPU Kernel Actually Run?

• User space SW talks to GPU via ioctl()

• ROCk is emulated in gem5 (SE mode only)

• Handles ioctl commands

• CP (Command Proc) frontend

• Two primary components:

• HSA packet processor (HSAPP)

• Workgroup dispatcher

• Runtime creates soft HSA queues

• HSAPP maps them to hardware queues

• HSAPP schedules active queues

• Runtime creates and enqueues AQL packets

• Packets include:

• Kernel resource requirements

• Kernel size

• Kernel code object pointer

• More…

MEM

CU

GPU
HSAPP

Dispatcher

HW Model Components

ROCk

User Space SW

ioctl()gpu_compute_driver.[hh|cc]

dev/hsa/hsa_packet_processor.[hh|cc]

dev/hsa/hw_scheduler.[hh|cc]

CP

Head ptr

Tail ptr

HSA software queue

HW queue

HW Queue
Scheduler

hsa_packet.hh

hsa_queue.hh

kernels work-
groups

16

Dispatching Kernels to CUs

• Kernel dispatch is resource limited

• WGs are scheduled to CUs

• Dispatcher tracks status of in-flight/pending kernels

• If a WG from a kernel cannot be scheduled, it is enqueued until resources become available

• When all WGs from a task have completed, the dispatcher frees CU resources and notifies the host

1) Try to dispatch WGs on every cycle

2) Pick oldest AQL pkt in queue; if it has
unexecuted WGs, try to schedule them on a CU

3) Dispatch WG to CU if there are enough WF
slots, enough GPRs, and enough LDS space

Shader

CU CU CU

GPU Dispatcher

AQL Pkt

AQL Pkt

-

HSA Queue Entry
(AQL kernel)

0

1

2

3

ID

AQL Pkt

Grid
wg(0, 0, 0) wg(1, 0, 0)

wg(0, 1, 0) wg(1, 1, 0)

dispatcher.[hh|cc]

hsa_queue_entry.hh

17

How does an instruction actually run through GPU?

• Pipeline stages

• Fetch: fetch for dispatched WFs - fetch_stage.[hh|cc] and fetch_unit.[hh|cc]

• Scoreboard: Check which WFs are ready - scoreboard_check_stage.[hh|cc]

• Schedule: Select a WF from the ready pool - schedule_stage.[hh|cc]

• Execute: Run WF on execution resource - exec_stage.[hh|cc]

• Memory pipeline: Execute (local data store) LDS/global memory operation

• local_memory_pipeline.[hh|cc]

• global_memory_pipeline.[hh|cc]

• scalar_memory_pipeline.[hh|cc]

Fetch Scoreboard Schedule Execute
Memory
pipeline

Fetched WFs Ready WFs Executing WFs

Local memory (LDS)

Global memory (TCP)
Scalar memory

18

Outline

• Modeling & Using GPUs in gem5

- Where is GPU code?

- What libraries are required?

- What support is provided?

- How to compile GPU model in gem5?

- Running GPU programs in gem5

- GPUFS Primer

19

Compiling gem5’s GCN3 GPU model

cd gem5

 docker run --volume $(pwd):$(pwd) -w $(pwd) gcr.io/gem5-test/gcn-
gpu:v22-1 scons build/GCN3_X86/gem5.opt -j9

Use the v22.1 gem5 docker we pulled earlier

Build the GCN3 model

Hopefully this has compiled for everyone already

20

Outline

• Modeling & Using GPUs in gem5

- Where is GPU code?

- What libraries are required?

- What support is provided?

- How to compile GPU model in gem5?

- Running GPU programs in gem5

- GPUFS Primer

21

Running Square

• What is square?

• Simple vector addition program – each thread i does C[i] = A[i] + B[i]

• Ideally suited to running on a GPU (perfectly parallel)

• Running:

cd .. ; mkdir –p bin

wget http://dist.gem5.org/dist/v22-1/test-progs/square/square

docker run --volume $(pwd):$(pwd) -w $(pwd) gcr.io/gem5-test/gcn-
gpu:v22-1 gem5/build/GCN3_X86/gem5.opt
gem5/configs/example/apu_se.py -n 3 -c bin/square

3 threads because ROCm uses multiple processes

Should take < 5 minutes to run in gem5

Path to square binary

base config script for running GPU models (in SE mode)

22

Comparing register allocation schemes

• GPU models have support for multiple register allocation schemes

• To specify: --reg-alloc-policy=[dynamic, simple] on command line

• Simple policy: run 1 wavefront per CU at a time

• Few stalls and contention

• Dynamic policy: run up to max (40) wavefronts per CU at a time if registers
are available

• But more stalls and contention

• Your mission: run square with each policy, compare them!

• Use –d to redirect output to a different folder (default: m5out)

• Based on your results, which policy do you think runs by default?

23

GPU Stats

• GPU stats are different from CPU ones – specific counters for GPU

shaderActiveTicks: how
long each CU was
running this app

24

Comparing simple and dynamic register allocation

• Simple: 1151851499 ticks

• Dynamic: 1155814499 ticks

• Dynamic slightly (0.5%) worse!

• Dependence tracking in gem5 GPU model is not perfect

• Area where new research contributions are needed :)

• Extra contention causes more stalls

25

Dynamic Register Allocation Not Always Better

0

0.5

1

1.5

2

2.5

3

3.5

N
ro

m
a

li
z
e

d
 S

p
e

e
d

u
p

Static Register Allocation Dynamic Register Allocation

We patched this with smarter dependence tracking, but other problems may exist

26

gem5-Resources: lots of GPU workloads

Utilize these to get started after the workshop!

27

Outline

• Modeling & Using GPUs in gem5

- Where is GPU code?

- What libraries are required?

- What support is provided?

- How to compile GPU model in gem5?

- Running GPU programs in gem5

- GPUFS Primer

28

GPUFS (Full System) Simulation

• Now can simulate GPU apps in Full System mode too (“GPUFS”)

• Caveat: As of gem5 22.1 only X86 KVM CPU is supported

• Thus gem5 host machine must be X86 with KVM support

• Support for other models is in progress.

• Main GPUFS differences vs. SE mode:

• ROCk (Linux kernel driver) is simulated instead of emulated

• GPU DMA engines and packet processors are modeled in GPUFS

• Virtual memory support is available in GPUFS

29

GPUFS use cases

• ROCk (Linux kernel driver) is simulated instead of emulated

• Linux driver can be modified to simulate various changes
For example: Experimenting with AMD GPU’s flexible page sizes

• GPU DMA engines and packet processors are modeled in GPUFS

• GPU memcpy calls can be performed functionally to decrease simulation time

• Can introduce new DMA packet types

• For example: New packets for data placement

• Virtual memory support is available in GPUFS

• Can modify virtual memory in driver to test new GPU uses

• For example: Page fault handling when GPU footprint > dGPU memory size

30

GPUFS Simulated System Changes

• GPU Virtual Memory (GPUVM), DMA engines (SDMA), PM4 packet
processor, host data bypass path, and interrupt handler are added
(purple boxes):

CU

TCP

CU

TCP

CU

TCP

CU

TCP

SQC

TCC

CPU0 CPU1

CPU I-Cache

L1D L1D

L2

Memory

dGPU

CPU

Scalar Cache

GPU Memory

SDMAs
SDMAs

PM4

Interrupts

GPUVM

PCIe

31

Creating GPUFS Resources

• Docker Container

• Contains an installation of ROCm software stack

• Used to build applications to run in full system simulations

• Publicly Available!

• Integrated into gem5 repo: https://gem5.googlesource.com/

• Added bmks & doc. in gem5-resources [Bruce ISPASS ‘20 Best Paper Nom.]

• Strongly suggest building applications requiring ROCm with docker

• Disk Image & Linux Kernel

• Contains a version of Linux and ROCm to be used for Full System simulation

• http://dist.gem5.org/dist/v22-1/images/x86/ubuntu-18-04/x86-gpu-fs-20220512.img.gz
http://dist.gem5.org/dist/v22-1/kernels/x86/static/vmlinux-5.4.0-105-generic

• Disks can also be created manually for more recent versions

https://gem5.googlesource.com/
http://dist.gem5.org/dist/v22-1/images/x86/ubuntu-18-04/x86-gpu-fs-20220512.img.gz
http://dist.gem5.org/dist/v22-1/kernels/x86/static/vmlinux-5.4.0-105-generic

32

Current GPUFS Support

• ROCm supported in gem5: ROCm v4.3

• ROCm 5.0 and ROCm 5.4 have also been tested

• Currently these disk images need to be created manually (vs. using packer / downloading
image)

• Full System AMD GPU support

• Vega (gfx900 – dGPU)

• Only officially supported gfx90x GPUs can be run in gem5 Full System with real driver

• Standard library currently not supported – use
configs/example/gpufs/vega10_kvm.py

• Currently only supports Ruby

• GPUFS is only supported on Vega with dGPU devices

33

Compiling gem5’s Vega GPU Model

• Full System GPU model is built similar to other ISAs:

• scons -j17 build/VEGA_X86/gem5.opt

• Do not need to build gem5 using docker!

34

Building applications to run in GPUFS

• A docker image with ROCm stack and compilers is provided to build apps

• docker pull gcr.io/gem5-test/gpu-fs:v22-1

• Example: Building square in gem5-resources repository

• cd gem5-resources/src/gpu/square

• docker run --rm -v $PWD:$PWD -w $PWD gcr.io/gem5-test/gpu-
fs:v22-1 make

35

Running square in GPUFS

• Note: Currently on the X86 KVM CPU can be used

• In the future other CPU models will be supported

• Running:

• build/VEGA_X86/gem5.opt configs/example/gpufs/vega10_kvm.py --
app gem5-resources/src/gpu/square/bin/square --disk-
image=/path/to/disk –kernel=/path/to/kernel --gpu-mmio-
trace=gem5-resources/src/gpu-fs/vega_mmio.log

• Note: All files passed to command lines are inputs and must be valid

• This requires that you have built the disk image and kernel (takes too long for tutorial)

36

Comparing register allocation schemes

• Similar to SE mode specify --reg-alloc-policy on command line
• In general commands are the same as SE mode but without running through docker

• To specify: --reg-alloc-policy=[dynamic, simple] on command line

• Simple policy: run 1 wavefront per CU at a time

• Few stalls and contention

• Dynamic policy: run up to max (40) wavefronts per CU at a time if registers
are available

• But more stalls and contention

• Your mission: run square with each policy, compare them!
• Use –d to redirect output to a different folder (default: m5out)

• Based on your results, which policy do you think runs by default?

	Slide 1: Running (AMD) GPU experiments in gem5
	Slide 2: Disclaimers
	Slide 3: Contributors
	Slide 4: Compiling gem5 GPU Model
	Slide 5: Outline
	Slide 6
	Slide 7: Alternate View
	Slide 8: AMD’s ROCm Stack
	Slide 9: Creating Portable gem5 Resources
	Slide 10: Outline
	Slide 11: Current Support
	Slide 12: APU vs. dGPU
	Slide 13: Outline
	Slide 14: Key GPU Code Locations
	Slide 15: How does a GPU Kernel Actually Run?
	Slide 16: Dispatching Kernels to CUs
	Slide 17: How does an instruction actually run through GPU?
	Slide 18: Outline
	Slide 19: Compiling gem5’s GCN3 GPU model
	Slide 20: Outline
	Slide 21: Running Square
	Slide 22: Comparing register allocation schemes
	Slide 23: GPU Stats
	Slide 24: Comparing simple and dynamic register allocation
	Slide 25: Dynamic Register Allocation Not Always Better
	Slide 26: gem5-Resources: lots of GPU workloads
	Slide 27: Outline
	Slide 28: GPUFS (Full System) Simulation
	Slide 29: GPUFS use cases
	Slide 30: GPUFS Simulated System Changes
	Slide 31: Creating GPUFS Resources
	Slide 32: Current GPUFS Support
	Slide 33: Compiling gem5’s Vega GPU Model
	Slide 34: Building applications to run in GPUFS
	Slide 35: Running square in GPUFS
	Slide 36: Comparing register allocation schemes

